2. E elliptic curve \(/ \mathbb{Q} \)

\[P_{E, P} : \mathfrak{G}_E \rightarrow \text{GL}_2(\mathbb{Z}_p) \]

\[\downarrow \]

\[\text{GL}_2(\mathbb{Q}_p). \]

\(\{ P_{E, P} \} \) compatible system

\[E \leftrightarrow f \text{ newform of wt } 2 \]

\[+ \text{ level } \Gamma_0(11) \]

\[\text{Thm (modularity of elliptic curves)} \]

- bijection
- isogeny classes
 \(\{ \text{E elliptic curve} \} \leftrightarrow \{ \text{normalized newform } f \text{ of wt } 2, \text{ level } \Gamma_0(11), \text{ with integer Fourier coefficients} \} \)
In fact $N = N_E = \text{conductor of } E$

Correspondence: $a_p(f) = a_p(E) (p \nmid N_E)$

Proven by passing through compatible systems of Galois reps.

$f \mapsto \{ P \in \overline{\mathbb{Q}}_p, \beta \}$

[Eichler–Shimura 60s].

Idea: Use the geometric interpretation of f to associate A_f, an abelian variety, to f.

Tate module of A_f gives a compatible system, and if f has integer coefficients, A_f is an elliptic curve.
Keep assumption that \(f \) has wt 2, forget the assumption on coefficients.

Let \(K_f = \text{coefficient field of } f \).

Then \(G_{K_f} \) acts naturally on \(1 \)-Type modules of \(A_f \), so if \(\chi \) is a prime of \(A_{K_f} \), get

\[
P_f, \chi : G_{\mathbb{Q}} \rightarrow GL_2(K_{f, \chi}).
\]

Its, unramified outside \(N(1/f) \), and irreducible.

\[
\text{tr}(P_f, \chi)(\mathfrak{f} \mathfrak{b}) = \sigma_e(f) \in N(1/f)
\]

Compatible system.

A single \(P_f, \chi \) is enough to determine \(f \), and so a single \(P_f, \chi \) is enough to determine the whole compatible system.
If f has no $k \neq 2$, then $\sigma = \alpha$. It's still possible to construct the \mathfrak{P}_{σ}:

- if $k > 2$, Deligne used étale cohomology of Kuga-Sato varieties
- étale cohomology of modular curves with non-constant coefficients.

- $k = 1$, Deligne - Serre used congruence to construct the \mathfrak{P}_{σ}.

In this course, $k > 2$.

So in general, $f \rightarrow \mathfrak{P}_{\sigma, 1, 3}$.

Want: to go from a compatible system to a modular form.

Question: Does every compatible system of eigenforms $\mathfrak{P}_{\sigma}: \mathcal{G}_{\mathfrak{a}} \rightarrow \mathcal{G}_{\mathfrak{L}}(K_{\mathfrak{a}})$ come from a modular form?
\[K = \text{# field, } \lambda = \text{finite place of } K, \text{ } \mathfrak{p}_{\lambda} \text{ its, mod, unramified outside } N(\mathfrak{m}), \Phi \to \mathfrak{p}_{\lambda}(F_{\lambda}), \mathcal{L} + N(\mathfrak{m}), \text{ independent of } \lambda \]
Fact/easy calculation:
- If $c \in \mathbb{C} \times \mathbb{Q}$ be complex conjugate, then $\det ps, \chi(c) = -1$.

Say that ps, χ is *odd*.
Maass forms examples all have
$\det p_{s_3}(c) = +1 \quad [p_{s_3} \text{ is even}]

Can avoid Maass forms by saying that p_{s_3} are *odd*.

Conj. If p_{s_3} is a compatible system of odd representations, then $f(x) \in \mathbb{Z}$, f modular form s.t. $R = \mathcal{E}^{-1} \otimes ps, \chi$.

Reasonable conj but probably very hard to prove.
Reason this is hard is that we haven't said anything about $\mathcal{X}_{/\mathbb{Z}_p}$, $p = N\mathbb{Z}$.

"Motto: \mathcal{X} is determined by $\mathcal{X}_{/\mathbb{Z}_p}$".

Idea: $\mathcal{X}_{/\mathbb{Z}_p}$ can be very complicated, and we should try to understand it better.

The way we understand $\mathcal{X}_{/\mathbb{Z}_p}$ is via p-adic Hodge theory.

If f has weight k, then

$\text{Pr} \times \mathcal{X}_{/\mathbb{Z}_p}$ is de Rham with Hodge-Tate weights $0, k-1$.
If we believe the Conjecture above, should also believe:

Conj. Let \(\langle px \rangle \) be an odd compatible system of odd mod. reps., with the property that \(\exists \) integers \(a, b \) s.t. \(b > 0 \), and \(\exists \) \(\forall \) for each \(\lambda \), if \(p = M \lambda \), then \(p x \) is de Rham with Hodge-Tate weights \(a, a + b \).

Then \(\exists \) \(\forall \) a modular form of wt \(b + 1 \) s.t. \(p x \otimes \mathfrak{E}^{a} \cong \mathfrak{P}_{\lambda} \).

([Conj \implies \text{Conj}' \text{ using } \mathfrak{E}^{a} \text{ has Hodge-Tate weights } a].)

Advantage of Conj': can actually prove it in a lot of cases.
Conjecture (Fontaine-Mazur).

If \(E/Q_p \) is finite, and

\[
p : \mathbb{G}_m \rightarrow \mathbb{G}_m^2 \quad (E)
\]

is its, odd, irreducible, de Rham at \(p \) [\(\mathbb{G}_m \) is de Rham] unramified at all but finitely many primes.

Then \(\exists a, f \text{ s.t. } p \equiv 3^a \mod \mathfrak{p} \)

for some \(\mathfrak{p} \).

Let \(FM \text{ conj } \Rightarrow \text{ Conj } \)

[Each \(p \) satsifies hypothesis of \(FM \text{ conj } \)].
The Rhs.

- If we drop the Riemann condition, or the condition that \(p \) is unramified a.e., then \(c \) is false.
- This implies that \(p \) is part of a compatible system.
- \(f \) is determined uniquely by \(p \).
- If \(p \) has distinct Hodge-Tate weights, then:
 - \(f \) should have weight \(k > 2 \)
- Conjecturally, 'odd' should follow from the other hypotheses.

[Proved in many cases by FC, using modularity lifting theorems]
[We will keep the assumption of oddness]
Strategy for proving Case 1:
- Choose a "nice" \(\lambda \).
- Prove FM conjecture for \(\overline{\lambda} \).

\[\overline{\lambda} \text{ is modular} \]

- Prove that \(\overline{\lambda} \), the reduction mod \(p \) of \(\lambda \), is modular [Sene's conjecture].

- Deduce that \(\lambda \) itself is modular [modularity lifting theorems].

\(p : G_A \rightarrow GL_2(E) \) is finite.

Conjugate: \(p : G_A \rightarrow GL_2(G_E) \). Reduce modulo \(m_E \).
\(\overline{p} : G_a \to \text{GL}_2(\mathbb{F}) \quad \mathbb{F} = \mathbb{F}_q \text{/ \text{finite}}. \)

This is only well-defined up to semi-simplification.
Assume: \(\overline{p} \) is absolutely irreducible.
Then \(\overline{p} \) is well-defined, depends only on \(p \).

Scone\'s conject [mod-p version of FM conjecture.]

Conj: If \(\overline{p} : G_a \to \text{GL}_2(\mathbb{F}) \) is cus, odd, absolutely irreducible, then it is modular, i.e. \(\overline{p} \simeq \overline{p}_{f, \lambda} \) some \(f, \lambda \).